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SUMMARY

A central limit theorem for normalized sums of random variables that form an

autoregressive integrated moving average (ARIMA) process is developed. The need for such a

limit theorem is discussed in connection with modeling total compensation costs associated with

insurance or medical claims.
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1. Introduction

In order to make the discussion reasonably self contained, it is necessary to introduce

autoregressive integrated moving process and related concepts. For a complete development and

discussion of the mathematics and applications of these processes, refer to Brockwell and Davis

(1992), upon which the present notation and discussion is based.

Consider a fixed probability space (12, 3, P) on which all subsequent random variables

will be defined. A collection of random variables (Zt, t=O, ±1, ±2, ...) is said to be a white noise

process if EZt=O, E(Z2)=" 2 , for all t, and E(ZtZs)=O for all s, t with set. This is denoted by

(Zt)-WN(0,a 2). If the Zts are also independent and identically distributed, this is indicated by

{Zt)-IID(Oa 2 )" [Yt, t=O, ±1, ±2, ...) is said to be an autoregressive moving average process

with autoregressive order p and moving average order q, denoted by (Yt)-ARMA(pq), if Yt

satisfies a set of difference equations of the form (the (pis and eis are fixed real constants)

Yt-(PlYt-l_'P2Yt-2_-*''pYt-p = Zt+01Zt-l+02Zt-2+''+0qZt-q (1)

for all integer t, where {Zt)-WN(0,o 2 ), and the polynomial (p(z)=1-q4lz-qP2 z2 -...- qppz has no

roots on the unit circle {z:lzl=1) in the complex plane. Introducing the back-shift operator B,

where BYt=Yt.I, BJYt=Yt j, for integerj, (1) can be written compactly as

4p(B)Yt---O(B)Zt (2)

where 4p(z)=l-(plz-...-4ppzP, and O(z)=l+0 1 z+0 2 z2+...+Oqzq. By definition, EYt=0 for all L The
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process {Yt' t=0, ±1, ... } is said to be an ARMA(p,q) with mean ga if {Yt-t, t=0, +1, ...) is an

ARMA(p,q) process. The condition

ýp(z)*O for Izl=l

insures that the process {Yt' t--0, ±1, ...) satisfying (1) is stationary, which means that the

autocovariance function y(s,t)=cov(Yt, Ys) depends only on It-sl, so that it can be expressed as

",YY(h) =- cov(Yt, Yt+h) (3)

without ambiguity. Moreover, if fp(z)*0 for Izl=l, then the difference equations (1) have a

unique solution given by

Yt=_. 00(4)

where the series converges almost surely and in mean square, the coefficients (n*) satisfy

and (Nf}) are the coefficients in the Laurent expansion 0(z)/Ap(z) = *= 4v.zj, valid for z

satisfying r<lzl<l/r, for some re (0,1). In some applications, it is desirable to require that the

representation (4) have 4f-- 0 for j<0, so that Y is expressed as a linear combination of current

and past Zts. This is true if (p(z)*O for IzI1:, i.e. all the roots of q)(e) lie outside the unit circle in

the complex plane. Such a process is then called a causal ARMA(p,q). It can be shown that as

long as Cp(z)*0 for Izl=l, an ARMA(p,q) process always has a causal representation. That is, it is

always possible to redefine the white noise process and the polynomial (p so that the process is

causal. It will be assumed that all ARMA(pq) processes discussed herein are causal.

ARMA processes are useful in describing or approximating a wide variety of stationary

processes whose autocovariance functions approach zero as the lag approaches infinity. A great

many methods have been devised for estimating the orders p and q, and the unknown 4pis and 0is

in (1) for a given set of observations. For example, see Box and Jenkins (1970), Brockwell and

Davis (1991), and Priestley (1981). Often however, it is necessary to model various types of

nonstationary processes, for example, those with additive components of trend and seasonality.

Processes containing polynomial trend and/or periodic behavior can be modeled essentially by

allowing the autoregressive polynomial to have one or more roots on the unit circle in the
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complex plane. One such type of model is called the autoregressive integrated moving average

(or ARIMA) process. These are particularly useful for modeling processes without a seasonal

component, but which are "explosively" nonstationary, as is the case when the series has a

deterministic or stochastic polynomial trend. ARIMA processes are defined as follows.

Define the difference operator V a (1-B), V0-1, and VJ=V(Vj'l) forj>_l. Let d be a non

negative integer. The stochastic process [Xt, t-•l-d, 2-d, ..., 0, 1, 2, ... ) is called an ARIMA

(p,d,q) process if vdXt=Yt where (Ytd is a causal ARMA(pq) process with mean t.. Thus, for

example, if Xt=A0 +A t +...+A td-1 + * where {Yt is a causal ARMA process and the Ais

are arbitrary random variables, then (Xt) is an ARIMA(p,d,q) for some p and q. This follows

easily from the result that Vdpt--0 for any polynomial pt=Ao+Alt+...+Amt m of degree m<d.

In the next section, the proper centering and normalization of =Xt to achieve an

asymptotic normal distribution is studied when (Xt) is an ARIMA(p,d,q) process and the white

noise process IZt} appearing in (1) and (2) is actually an IID(0,o 2 ) process. Interest in this

problem is stimulated by the modeling of medical or insurance claims. A typical model for

insurance claims is the so called compound Poisson process. See Prabhu (1980), for example,

for extensive discussions of this model in the insurance risk context. Here, claims are generated

according to a nonhomogeneous Poisson process (NT, TO), and successive claim costs are

assumed independent of (NT T'20), and to form a sequence of iid random variables, {Yt' t.>_).

Thus, total claim costs from the time period (0,7] are given by

CT =1 tNTY (5)

where a sum with upper index 0 is defined to be 0. If E(NT)--m(T), m(T)too as T-i-o, and

Y{ t )-IID(p,2), then it follows from elementary limit theory that

=-mm (T)] N(0,1) 
(6)Emm(T)(g+,c2)] 1/2

as T-P-*, where N(m, T2) denotes a random variable that is normally distributed with mean m

and variance r2. The notation Xn - X as n-.**, means P(Xngx)}-,-P{Xgx) as n.-o-, for all x at
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which the function x.P(X<.x) is continuous. The result (6) allows the distribution of total claim

cost CT to be approximated for large T. This model is important to the insurance industry, since

if premiums are collected at a constant rate p per unit time, and the firm starts initially with a

cash reserve of c, then the quantity c + pT - CT represents, in a simplified setting, the monetary

reserve of the insurance company at time T, and the first time that this process hits the value

zero, the company becomes insolvent.

The model (5) is also plausible for describing medical claims / compensation costs

associated with accidents or hazardous materials exposure. In this context, the model (5) can be

made more realistic by allowing the claim amounts to be correlated and/or to have a trend. Legal

(and other) precedents / interventions and economic factors can affect successive claim costs to

the extent that an ARIMA(pd,q), with suitable p, d, and q, would be a more appropriate model.

If this is the case, then in order to develop limit theorems similar to (6), it is necessary to study

the asymptotic distribution of =Xt, where fXt) is an ARIMA(p,d,q) process. To facilitate

this, it will be assumed from now on that the white noise process (Zt) that appears in (1) and (2)

is actually an lID sequence, i.e. that (Zt)-IID(0,02 ).

The case where fXt-g)={(Y t-ARMA(pq) is a special case of Theorem 7.1.2 of

Brockwell and Davis (1992), which shows that
-1/'2• n t• 0

n .. ( )+N( ) as n-o-*, (7)

where

v = yy(O)+21h..ly(h), yY(h) = cov(Yt, Yt+h), (8)

provided that v2 >0. Then the factor (A2-+T2) in (6) becomes (A2 +v2 ). Since T2 corresponds to

/y(0), the asymptotic variance of CT could be larger or smaller than in the LID case, depending

on the values of the autocovariances. When (Xt) is an ARIMA(p,d,q) process, then n"1/ 2 must

be replaced by nd'2 as the proper normalization of g__Xt, as will be seen in the next section.
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2. Central Limit Theorem for a Class of ARIMA Processes

Let {Xt, t=l-d, 2-d, .., 0, 1, 2, ...) be an ARIMA(p,dq) process, satisfying vdxt=yt+.

where [Yt) is a causal ARMA(p,q) process as in (1) and (2) with {Zt)-IID(0,a 2 ). Define the

usual operation of generating factorial polynomials by kJ)=- [i (k-i+l) = k(k-1)...(k-j+l) for

integers j and k with j>O, and k(O)=-l. Thus, with k treated as a variable, it follows that for j_>O,

V (k+1)0(+l/[j+l)!] = k()/j!, (9)

and

(n+l) (10)__0k(J)/ ~j ! +i)! (O

The main result is the following theorem, which holds even for the case d--- with the convention

that summations with upper limit 0 are taken to be 0.

Theorem 1. Let yy(*) be the autocorrelation function of Yt=Vdxt-t, and suppose that

,yy(O)+21;h=ly(h) >0. Then, as no--,, the distribution of
(1/d!) .n= (X-•d0VXtii * )(0i! - p.(t+d- 1)(d)/d!)

[7y(O,) n .[(V+d-l)(d)]2 +2 •' y(h).Ž= (v+d-_)(d)(v+h+d- )(d)]1/2

converges to that of N(0,1).

Before developing a proof of Theorem 1, a few remarks and a corollary will help clarify

this result. First, the centering and norming sequences in Theorem 1 are chosen to match the

mean and variance of (11) with that of N(0,1) for each r~l_, not just in the limit. This tends to

make the normal approximation more accurate. Because (Yt)-ARMA(p~q), and therefore Yt

has the representation (4), it can be shown that the series (8) converges absolutely, and
Ty,(O)+2: i-fy(h): = 2 Oj)2

where {j4t) are the constants in the representation (4) with ij=0 for j<0 by causality. By
jJ

elementary asymptotic analysis of sums of integer powers, both of the sums on v appearing in

the denominator of (11) are asymptotic to n 2d+l/(2d+l) as n-,-. Finally, the polynomial with

stochastic coefficients that appears in the numerator of (11) leads, after summation, to a term that
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is equal to p(n+d) (d+l)/[(d+1)!]+ Op(n ) as n-oo, again by simple asymptotic analysis of sums

of integer powers. Hence, the centering constant in (11) can be modified, and the normalization

constants simplified, yielding the following corollary.
Corollary 1. Under the conditions of Theorem 1, n- 1/2-d l(Xt.(t+d-1)(d)/dw) =

N(, co 2) as n--oe, where
(0 2=(2d+1)" Ild!-'2[y(O)+2•h 1yy(h)]. (12)

The proof of Theorem 1 requires several lemmas. Ultimately, the goal is to express

_nXt as a weighted sum of the Yt. which have the representation Yt-;=0VjZt-j, and then to

exploit the fact that (Zt}-IID(O,a 2 ) in order to apply a classical central limit theorem. The first

lemma is fundamental in this goal.

Lemma 1. Suppose that VdXt=Yt+g , Q:>1. Then for aŽ1, Xt can be expressed as

Xt =d-1-Vi X)(t+i-1)(i) + (t+ddl) (d) t.,t (v+d-2) (d-1) (3
t= 1i=(vX0) i! + d! + 7__I t-v+l (d- (13)

and for n>l

n X d-I(V.ix (n+i) (i+l) g(n+d) (d+1)+n (v+d-1)(d)
(-t=l ei--0 O)0+1)! (d+l)! /=r-1 n-v+l d!(

Proof: It may be assumed without loss of generality that ---O. The first formula follows

from an induction argument on d. If d=l, then for k.>l Xk-Xk-l=Yk, by definition, and

summing this gives Xt=XO+•=lYk=XO+ 1,V=lYt v+l, so (13) holds for d=l. Assume (13)

holds for some d&l, and rewrite it as

Xt = x'=((vixo)(t+i-1)(i)/i! + dt_v+l(v+d-2)(dl)/(d- 1)!. (15)

Suppose that Vd+lXt=Yt. Then Vdx;=4=IY1 + vdx0 . Substituting t-v+1 for t in this, and

using (15), the induction hypothesis, it follows that
Xt -d l~vx,,)(t+i.1)(i/! rt t =-v I , + vd 0X v .2(d-1)( .)
--+i_--10 ++ vd=0 (v+dl2) 1(d-l),

- -d vx~~~i1(i)/i+ lY•-jz lj Y .2)(d-1 )/(d-l)!

= dVix0 )(t~i. 1)(i)/! +tf . Ul)(d)/d!,
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by applications of (9) and (10), a reversal of the order of summation, and a change of variable.

This completes the induction proof of (13). Relation (14) follows by summing relation (13) from

t= 1 to n, reversing the order of summations, and using (9).

Lemma 2. Let (Zt)-IID(0,o2 ), and for each n2-1, let at n' l<t.n, be a sequence of

constants satisfying

a
2
t,n _-+0, as n-,fl. (16)max 1 < <.n 2 asn-ne

SaZg=1a t,n

Le t~nt , e 5~n, and S -. 0,)9 at, n]t
Lot n 2 Then as n--, Sn,,N(0,1).

Proof: Ii=IE(Xt.n)=- 2 for all n. Let e>O. Then

.=lE(X~nl(IX I>e)) <'E(Z2a 1 2 2 [2vn 2 1 .0
t,n (IIimx1t5an 4 an e -'

as n-oeoo by the dominated convergence theorem. Hence, by the Lindeberg - Feller Central Limit

Theorem (Durrett (1991), p. 98), the result follows.

The final lemma needed in the proof of Theorem 1 is proposition 6.3.9 from Brockwell

and Davis (1992). A sketch of its proof based on convergence of characteristic functions is

given there. Here, a slightly different proof is presented in detail. For random k-vectors Xn and

X, X n.X as n--oo means that P{XneA).-P(XeA) as ni..o for every k-dimensional Borel set

A whose boundary aA satisfies P(XeaA)=O, which is equivalent to the condition that

Ef(Xn)-b.Ef(X) as n-.., for every bounded and continuous real valued function f on the

k-dimensional real numbers. This is in turn equivalent to Ef(Xn) eEf(X) as n-o- for all bounded

and uniformly continuous real valued functions f on the k-dimensional real numbers.

Lemma 3. Let Xn, n=-, 2, ... and Ynj, j=1, 2, ...; n=l, 2, ... be random k-vectors such

that

(i)Y Y-+Y. as n-*- for each fixedjnj j

(ii) Y =-o Y as-



(iii) limjrn. lirn supn..- P(IXn-Y njI>e)=0 for every E>O, where ol. signifies the usual

Euclidean norm.

Then Xn-*Y as n-+-e.

Proof: Let f be a bounded uniformly continuous real valued function defined on the

k-dimensional real numbers. It is sufficient to show that IEf(Xn)-Ef(Y)I-+0 as n--o. Fix an E>0.

There exists a 8>0 such that If(x)-f(y).5e for any x and y satisfying Ix-yl•&S. By the triangle

inequality,

IEf(Xn)-Ef(Y)I 5 EIf(Xn)-f(Ynj)I + IEf(Ynj)-Ef(Yj)I + IEf(Yj)-Ef(Y)I.

Denoting an upper bound of the function f by C, the first term on the right side of the inequality

is bounded by

2C P(IXn-Ynj >6} + E.

It follows from (i) that for any j,

liur p n.-* •Ef(X n)-Ef(Y)I < e +2C lim sup n..,P(Xn-Y njI>8)+IEf(Y.)-Ef(Y)I.

Taking the lim supj-., on both sides and using (ii) establishes the result, since e>O was

arbitrary.

Proof of Theorem 1: By Lemma 1, the remarks following Theorem 1, and the fact that

if Cn -*c and Zn-.Z as n-.--, then CnZn-*CZ as n.,--, it suffices to show that
, d!n ( dn d(2d+ 1) 1d! =Y n-v+l (v+d- 1)()d

v1-.N(0,1) (17)
o[Y•0j'= [j n d+ 1/2

as n-b. By representation (4) with__•i=0 for j<O by causality, Yt=l=6W Ztj for all t. Define

Qnm = -(l'VjZn-v+lI )(v+d- l)(d)/d"

Changing indices of summation by letting t=n-v+1, and then j--t-k, it follows that
* ~ l. Ir~k+.. n ) Zk n-m k+m

Q.m 4= lm( l--0-f f(n-tid)kd) Zkt k (nt

+ __n~m 1v~ A ~-(n't+d) (d)/d!)Zk
4--mA =kW Zk

Denote these last three double sums respectively by Qnm(l), Qnm(2), and Qnm(3). Then for

-9-



fixed m, Q *(1) = 0 (nd), and thus n'd'l/ 2 Q (1) ý0as n-..oo. Also, for large n,

nm p nm

Var(Qn (3)) -- A2 n2d(o_ I_.jl/d!) so that Var(nd'l/ 2 Q* m(3)) -. 0 as n-poo and hence

n'd'l/2Qnm(3) P0 as n--,,,. Denoting the coefficient of Zk in the second double summation by

ak,n, it follows by the summation-by-parts formula that
(• )(n'k'm+d)(d)

a = + d) O(nd'l (18)
k,n 3~=0J d!+)n

d-1 n 2 2d+lwhere the O(n ) term is uniform in k, 0<_k_•n, for fixed n. Thus, k=Oak,n=O(n , and

hence (16) is satisfied, and by Lemma 2, and the fact that (18) implies that

n 2 n2d+l m 2d
=-O k,n-(2d+1)d!2 (J-O 0

it follows that for each fixed m,1/ (iYm 4f h2

2nm d l Qnm -+ N(0,tLP) (19)Qnm= nd/2oul /,cooloj--o
and obviously, as m-+oo, the last random variable in (19) converges in distribution to N(0,1). To

conclude (17) from Lemma 3, it is sufficient, by Chebychev's inequality, to show that
lim , lra U~n.* ar(nm(2d+l)1/'2 d! nl --0 jnv ') (v+d-1)(d)/df)0

limml000im supn-bCO Var(Qnm- nd'/ /Y* 10

Let D(n,d) = aPolovjI nd+li' (2d+1) 1 '2d!"1. Notice that
(2d+1)1/2dl E"0=I(-0^JRvI"J(~- )/d)!P•

E•Qnm"nd+l/2o! 00j
E(Q nm- d 4 /21oo =nn (v+d-1)(d) 0

1 d! Xli-m+lVfiZn-v+1i)2

D(n,d)

D2 (n,d) __I2 m+ l m+l'Vl•!'=1(+.) +

21 Jm•v~gc~, n (v+d- 1) (d)(v+d-j+k- 1)(d

as nm+ The resut•J yT2 +J'k" m "nf (1j_--01 ) 2o

as n-j**. The result now follows by letting m-*.**. The final form (11) of Theorem I follows by

-10-



using (13) and (14) to verify that (11) has mean 0 and variance 1.

Conclusions

A central limit theorem has been developed for centered and normalized sums of rar:dom

variables that constitute an ARIMA(p,dq,) process. If [Xt) is an ARIMA(p,dq) process

satisfying Vdxt=p*+Yt with (Yt)-ARMA(pq), it is seen that the proper normalization and

centering sequences in bl(Xt-at) are bn=nd+l/2 and at=g(t+d-1)(d)/d!.

Among other applications, this central limit theorem is important in making large sample

approximations related to sums of the form I NTX where (N., T }O) is a nonhomogeneous

Poisson process and (Xt) is an ARIMA(p,d,q) process, independent of (NT, 7>-O). This model

provides a realistic representation of the total claims cost associated with medical claims /

compensation costs associated with accidents or hazardous materials exposure.
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